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Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovakia
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In the development of Al-Al4C3 composites prepared
by mechanical alloying, on the basis of statistical anal-
ysis of an extensive set of values of mechanical prop-
erties, the relation for a quality factor (QF) was stated
as follows [1]:

QF = (Rm + 500) · A0.219
10

/
1420,

where Rm and A10 are ultimate tensile strength and
elongation at room temperature, respectively. The qual-
ity factor evaluates the final material quality. In the case
of preparation via powder metallurgy, this depends on
a lot of factors such as size, morphology and purity of
starting powders, matrix and dispersoids, technology
preparation of composites from powders, compaction
and consolidation operations decisive about distribu-
tion of dispersed particles in the matrix and residual
porosity and also predicts high temperature properties
of the composite materials as well as their stability [2].

In this work the quality factor was evaluated from the
point of view of optimisation of various technological
preparation ways in relation to fracture characteristics
for Pt-Y2O3 materials developed by low-energy mecha-
nical alloying [3–8] in relationship on papers [9–10].

Experimental materials labelled A, B, C were pre-
pared by recycling Pt wastes from linings of glass fur-
naces on powder and its low-energy mechanical alloy-
ing with the dispersed Y2O3 phase (0.5 wt%). The
intensity of the mechanical alloying process of the
mixtures (powder and dispersed phase) was different
related to the milling time and the speed of revolu-
tions of the attritor, respectively. Dry milling param-
eters in the attritor for individual materials were the
following: A: 10 h/210 r.p.m., B: 48 h/410 r.p.m., C:
48 h/210 r.p.m. The materials were pressed and hot
rolled under the same conditions. Detailed data about
the preparation are described in [3–5]. The experimen-
tal results were compared with commercial dispersion
strengthened materials based on Pt, Plativer (Pt-0.6
Y2O3) and ZGS (Pt-0.6 ZrO2).

The courses of calculated QF values for the Pt-Y2O3
material in the range of 0.2–1, which were determined
from the ultimate tensile strength values (Rm) and elon-
gation (A10), can be seen in Fig. 1. The material qual-
ity increases with the QF value increasing at optimal
combination of strength and plasticity parameters as

indicated by a region between the dashed lines. The
combination is important due to sufficient deformabil-
ity of cold formed sheets. The transcrystalline ductile
fracture with dimples, being in the range 1–15 µm, for
the material A characterized by high plasticity and the
lowest strength at QF = 0.5, as well as clusters of Y2O3
particles situated in large dimples are shown in Fig. 2.
The ductile fracture small dimples of 1 µm of the ma-
terial B have a more homogeneous distribution of the
Y2O3 phase, better mechanical properties and QF =
0.6 (Fig. 3).

The dimples of the material C, characterized by the
350 MPa ultimate tensile strength, the 18% elongation

Figure 1 QF values determinated experimentally from Rm and A10 and
calculated QF values for individual materials.

Figure 2 Transcrystalline ductile fracture of the material A.

0022–2461 C© 2004 Kluwer Academic Publishers 747



Figure 3 Transcrystalline ductile fracture of the material B.

Figure 4 Transcrystalline ductile fracture of the material C.

Figure 5 Transcrystalline ductile fracture of the material Plativer.

and the highest QF = 0.8, ranged in the 0.3–2 µm in-
terval, can be seen in Fig. 4. The Y2O3 particle size
(0.1–0.7 µm) is the 1/3 dimple size, corresponding to
the ductile fracture theory [6]. Fig. 5 shows the dimples
of the transcrystalline ductile fracture of the material
Plativer, QF = 0.45, the smallest ones of the 0.3–1 µm
range corresponding to the 100–300 nm Y2O3 parti-
cles, the biggest ones are over 10 µm. The dimples of

Figure 6 Transcrystalline ductile fracture of the material ZGS.

the heterogeneous size distribution of the material ZGS
of the 350 MPa ultimate tensile strength, the 5% elon-
gation and QF = 0.25, containing the ZrO2 particles,
are of the 5–10 µm and 0.5–2 µm ranges as the biggest
and smallest ones, respectively (Fig. 6).

As evident from the analysis of transcrystalline duc-
tile fractures, strength and plasticity parameters, the
highest quality factor value of the material C corre-
sponds to optimal combination of both strength as well
as plasticity. The fracture is characterized by homo-
geneous dimple size distribution with Y2O3 dispersed
particles homogeneously distributed in the matrix. The
preparation of the material C is the most optimal
from the point of view of used mechanical alloying
technology.
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